首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
硅酸钙加速碳化过程原理及最佳反应参数
作者:侯贵华1?Hamdy?M?NAGUIB1?2?陈思佳1?姚恒山1??豹1?陈佳男1?
单位:(1.?盐城工学院?江苏省新型环保重点实验室?江苏?盐城?224051??2.?埃及石油研究院?石油应用部?埃及开罗?纳斯尔城?11727)?
关键词:硅酸钙?加速碳化?二氧化碳捕获?固废?
分类号:TQ172.11
出版年,卷(期):页码:2019,47(8):0-0
DOI:
摘要:

?硅酸钙的加速碳化过程是非水硬性工业固废利用、二氧化碳的捕集与封存以及新型低钙硅酸盐水泥研究的共性关键问题。综述了时间、温度、CO2气体分压及水固比等对碳化速度的影响,统计分析了这些影响因素的最佳范围,并对硅酸钙碳化过程中的化学计量关系、碳化反应及碳化产物的类型进行了总结,提出了硅酸钙类矿物碳化反应模型。

基金项目:
“十三五”国家重点研发专项(2017YFC0703200);国家自然科学基金(51872252)项目
作者简介:
参考文献:

?[1] DOUCET F J. Effective CO2-specific sequestration capacity of steel slags and variability in their leaching behaviour in view of industrial mineral carbonation[J]. Miner Eng, 2010, 23: 262–269.

[2] MONKMAN S, SHAO Y. Assessing the carbonation behavior of cementitious materials[J]. J Mater Civil Eng, 2006, 18: 768–777.
[3] OLAJIRE A A. A review of mineral carbonation technology in sequestration of CO2[J]. J Petrol Sci Eng, 2013, 109: 364–392.
[4] RIMAN R E, NYE T E, ATAKAN V, et al. Synthetic formulations and methods of manufacturing and using thereof[P]. US Patent, 0312194 A1, 2012.
[5] YOSHIOKA K, OBATA D, NANJO H, et al. New ecological concrete that reduces CO2 emissions below zero level: New method for CO2 capture and storage[J]. Energy Procedia, 2013, 37: 6018–6025.
[6] GARTNER E, HIRAO H. A review of alternative approaches to the reduction of CO2 emissions associated with the manufacture of the binder phase in concrete[J]. Cem Concr Res, 2015, 78: 126–142.
[7] ASHRAF W. Carbonation of cement-based materials: Challenges and opportunities[J]. Constr Build Mater, 2016, 120: 558–570.
[8] HOU G, LI W, GUO W, et al. Microstructure and mineral phase of converter slag[J]. J Chin Ceram Soc, 2008, 36: 436–443.
[9] HOU G, LU B, GAO X, et al. Preparation and carbonation-hardening process of low-calcium cement composition[J]. J Chin Ceram Soc, 2016, 44: 287–292.
[10] TEIR S. Fixation of carbon dioxide by producing carbonates from minerals and steelmaking slags[D]. Finland, Department of Energy Technology, Helsinki University of Technology, 2008.
[11] SHI C, JIMENEZ A F, PALOMO A. New cements for the 21st century: The pursuit of an alternative to Portland cement[J]. Cem Concr Res, 2011, 41: 750–763.
[12] QIAN B, LI X, SHEN X. Preparation and accelerated carbonation of low temperature sintered clinker with low Ca/Si ratio[J]. J Cleaner Prod, 2016, 120: 249–259.
[13] ASHRAF W, OLEK J, TIAN N. Multiscale characterization of carbonated wollastonite paste and application of homogenization schemes to predict its effective elastic modulus[J]. Cem Concr Compos, 2016, 72: 284–298.
[14] SHAO Y, MIRZA M S, WU X. CO2 sequestration using calcium-silicate concrete[J]. Can J Civil Eng, 2006, 33: 776–784.
[15] CHANG E E, CHIU A C, PAN S Y, et al. Carbonation of basic oxygen furnace slag with metalworking wastewater in a slurry reactor[J]. Intl J Greenhouse Gas Control, 2013, 12: 382–389.
[16] SANTOS R M, BOUWEL J V, VANDEVELDE E, et al. Accelerated mineral carbonation of stainless steel slags for CO2 storage and waste valorization: Effect of process parameters on geochemical properties[J]. Intl J Greenhouse Gas Control, 2013, 17: 32–45.
[17] EL-HASSAN H, SHAO Y, GHOULEH Z. Reaction products in carbonation-cured lightweight concrete[J]. J Mater Civil Eng, 2013, 25: 799–809.
[18] GURTUBAY L, GALLASTEGUI G, ELIAS A, et al. Accelerated ageing of an EAF black slag by carbonation and percolation for long-term behaviour assessment[J]. J Environ Manag, 2014, 140: 45–50.
[19] CHANG E E, PAN S Y, CHEN Y H, et al. CO2 sequestration by carbonation of steelmaking slags in an autoclave reactor[J]. J Hazard Mater, 2011, 195: 107–114.
[20] GUNNING P J, HILLS C D, CAREY P J. Accelerated carbonation treatment of industrial wastes[J]. Waste Manag, 2010, 30: 1081–90.
[21] HUNTZINGER D N, GIERKE J S, KAWATRA S K. Carbon dioxide sequestration in cement kiln dust through mineral carbonation[J]. Environ Sci Technol, 2009, 43: 1986–1992.
[22] SEHGAL R, SEHGAL L, NEMA A K, et al. Carbon dioxide sequestration in alkaline top soil using alkaline wastes[J]. APCBEE Proc, 2014, 9: 87–91.
[23] ZHAN B, POON C S, LIU Q, et al. Experimental study on CO2 curing for enhancement of recycled aggregate properties[J]. Constr Build Mater, 2014, 67: 3–7.
[24] CUI H, TANG W, LIU W, et al. Experimental study on effects of CO2 concentrations on concrete carbonation and diffusion mechanisms[J]. Constr Build Mater, 2015, 93: 522–527.
[25] ROSTAMI V, SHAO Y, BOYD A J. Durability of concrete pipes subjected to combined steam and carbonation curing[J]. Constr Build Mater, 2011, 25: 3345–3355.
[26] MO L, PANESAR D K. Effects of accelerated carbonation on the microstructure of Portland cement pastes containing reactive MgO[J]. Cem Concr Res, 2012, 42: 769–777.
[27] EL-HASSAN H, SHAO Y. Carbon storage through concrete block carbonation curing[J]. J Clean Energy Technol, 2014, 2: 287–291.
[28] IIZUKA A, FUJII M, YAMASAKI A, et al. Development of a new CO2 sequestration process utilizing the carbonation of waste cement[J]. Ind Eng Chem Res, 2004, 43: 7880–7887.
[29] MONKMAN S, SHAO Y. Carbonation curing of slag-cement concrete for binding CO2 and improving performance[J]. J Mater Civil Eng, 2010, 22: 296–304.
[30] ASHRAF W, OLEK J. Carbonation behavior of hydraulic and non-hydraulic calcium silicates: potential of utilizing low-lime calcium silicates in cement-based materials[J]. J Mater Sci, 2016, 51: 6173–6191.
[31] PAN S Y, CHANG E E, CHIANG P C. CO2 Capture by accelerated carbonation of alkaline wastes: A review on its principles and applications[J]. Aerosol Air Qual Res, 2012, 12: 770–791.
[32] ROSTAMI V, SHAO Y, BOYD A. Carbonation curing versus steam curing for precast concrete production[J]. J Mater Civil Eng, 2012, 24: 1221–1229.
[33] COSTA G, BACIOCCHI R, POLETTINI A, et al. Current status and perspectives of accelerated carbonation processes on municipal waste combustion residues[J]. Environ Monitor Assess, 2007, 135: 55–75.
[34] YOUNG J F. Looking ahead from the past: The heritage of cement chemistry[J]. Cem Concr Res, 2008, 38: 111–114.
[35] STEINOUR H H. Some effects of carbon dioxide on mortars and concrete discussion[J]. J Am Concr Inst, 1959, 50: 905–907.
[36] MO L, PANESAR D K. Effects of accelerated carbonation on the microstructure of Portland cement pastes containing reactive MgO[J]. Cem Concr Res, 2012, 42: 769–777.
[37] DE-WINDT L, CHAURAND P, ROSE J. Kinetics of steel slag leaching: Batch tests and modeling[J]. Waste Manag, 2011, 31: 225–35.
[38] HUIJGEN W J, WITKAMP G J, COMANS R N. Mechanisms of aqueous wollastonite carbonation as a possible CO2 sequestration process[J]. Chem Eng Sci, 2006, 61: 4242–4251.
[39] O’CONNOR W K, DAHLIN D C, RUSH G E, et al. Carbon dioxide sequestration by direct mineral carbonation: Process mineralogy of feed and products[J]. Miner Metall Proc, 2002, 19: 95–101.
[40] GERDEMANN S J, O’CONNOR W K, DAHLIN D C, et al. Ex situ aqueous mineral carbonation[J]. Environ Sci Technol, 2007, 41: 2587–2593.
[41] YOUNG J F, BERGER R L, BREESE J. Accelerated curing of compacted calcium silicate mortars on exposure to CO2[J]. J Am Ceram Soc, 1974, 57: 394–397.
[42] FERNANDEZ-BERTOS M, LI X, SIMONS S J, et al. Investigation of accelerated carbonation for the stabilisation of MSW incinerator ashes and the sequestration of CO2[J]. Green Chem, 2004, 6: 428–436.
[43] TSUYOSHI S, ETSUO S, MINORU M, et al. Carbonation of γ-Ca2SiO4 and the mechanism of vaterite formation[J]. J Adv Concr Technol, 2010, 8: 273–280.
[44] HUNTZINGER D N, GIERKE J S, SUTTER L L, et al. Mineral carbonation for carbon sequestration in cement kiln dust from waste piles[J]. J Hazard Mater, 2009, 168: 31–37.
[45] UIBU M, KUUSIK R. Mineral trapping of CO2 via oil shale ash aqueous carbonation: Controlling mechanism of process rate and development of continuous-flow reactor system[J]. Oil Shale, 2009, 26: 40–58.
[46] DUAN Z, WEI Q. Solubility model of gas (CH4, H2S, CO2, etc.) in aqueous solution[J]. Acta Geol Sin, 2011, 85: 1079–1091.
[47] GAO X, LU B, JIANG W, et al. Study on carbonization process of steel slag under pressure steam conditions[J]. Mater Rev, 2016, 30: 106–110.
[48] BONENFANT D, KHAROUNE L, SAUVE S, et al. CO2 sequestration potential of steel slags at ambient pressure and temperature[J]. Ind Eng Chem Res, 2008, 47: 7610–7616.
[49] JIANG W, LU B, ZHANG F, et al. Process of slag carbonization and hardening[J]. Bull Chin Ceram Soc, 2017, 36: 539–544.
[50] MONTES-HERNANDEZ G, PEREZ-LOPEZ R, RENARD F, et al. Mineral sequestration of CO2 by aqueous carbonation of coal combustion fly-ash [J]. J Hazard Mater, 2009, 161: 1347–1354.
[51] BACIOCCHI R, COSTA G, GIANFILIPPO M D, et al. Thin-film versus slurry-phase carbonation of steel slag: CO2 uptake and effects on mineralogy[J]. J Hazard Mater, 2015, 283: 302–313.
[52] BERNAL S A, PROVIS J L, BRICE D G, et al. Accelerated carbonation testing of alkali-activated binders significantly underestimates service life: The role of pore solution chemistry[J]. Cem Concr Res, 2012, 42: 1317–1326.
[53] MATTILA H P, GRIGALIUNAITE I, ZEVENHOVEN R. Chemical kinetics modeling and process parameter sensitivity for precipitated calcium carbonate production from steelmaking slags[J]. Chem Eng J, 2012, 192: 77–89.
[54] CHANG J, FANG Y, LI Y. Effects of calcium to silicon ratios on accelerating carbonation of calcium silicate hydrate[J]. J Chin Ceram Soc, 2014, 42: 1377–1382.
[55] CHANG J, FANG Y, SHANG X, et al. Effect of accelerated carbonation on microstructure of calcium silicate hydrate[J]. J Chin Ceram Soc, 2015, 43: 1055–1060
?
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号????邮政编码:100831
电话:010-57811253??57811254????
E-mail:jccs@ceramsoc.com