位置:首页 >> 正文


?TiO2, CaF2-TiO2 and Ag2O-CaF2-TiO2 coatings were deposited on the surface of Ti alloy via plasma spraying. The microstructures of the coatings were characterized. The surface roughness, contact angle and corrosion resistance of the coatings were measured. The releases of Ca2+, F– and Ag+ ions of the coatings were investigated by ion release experiment. The in-vitro mineralization abilities of the coatings were analyzed by simulated body fluid (SBF) immersion tests. The antibacterial properties of the composite coating were evaluated using S. aureus and E. coli. The results show that TiO2 coating is composed of rutile and a small amount of anatase, and Ca2Ti2O6 solid solution occurs in CaF2-TiO2 and Ag2O-CaF2-TiO2 coatings. The surface roughness of the coatings increases due to the dopant of CaF2 and Ag2O, thus improving the hydrophilicities. The incorporation of CaF2 and Ag2O can enhance the corrosion resistance of TiO2 coating. After soaked in 2SBF solution (as the concentration of Ca and P is twice greater than that of SBF, and the content of other elements is unchanged), the coatings can induce apatite to form on the surface, having the superior in-vitro biomineralization abilities. The doping of Ag greatly improves the antibacterial properties of Ag2O-CaF2-TiO2 coating.


?[1] JAFFIN R A, BERMAN C L. The excessive loss of Branemark fixtures in type IV bone: A 5-year analysis[J]. J Periodontol, 1991, 62(1): 2–4.

[2] ZHANG E, LI F, WANG H, et al. A new antibacterial titanium-copper sintered alloy: Preparation and antibacterial property[J]. Mater Sci Eng C, 2013, 33(7): 4280–4287.
[3] LIU X Y, DING C X. Plasma sprayed wollastonite/TiO2 composite coatings on titanium alloys[J]. Biomaterials, 2002, 23(20): 4065–4077.
[4] HE X, ZHANG G, WANG X, et al. Biocompatibility, corrosion resistance and antibacterial activity of TiO2/CuO coating on titanium[J]. Ceram Int, 2017, 43(18): 235–238.
[5] ZHANG X, WANG H, LI J, et al. Corrosion behavior of Zn-incorporated antibacterial TiO2 porous coating on titanium[J]. Ceram Int, 2016, 42(15): 17095–17100.
[6] BURNAT B, ROBAK J, LENIART A, et al. The effect of concentration and source of calcium ions on anticorrosion properties of Ca-doped TiO2 bioactive sol-gel coatings[J]. Ceram Int, 2017, 43(5): 13735–13742.
[7] CHEN H J, WANG C L, YANG X, et al. Construction of surface HA/TiO2 coating on porous titanium scaffolds and its preliminary biological evaluation[J]. Mater Sci Eng C, 2017, 70: 1047–1056.
[8] YAN Y, ZHANG X, HUANG Y, et al. Antibacterial and bioactivity of silver substituted hydroxyapatite/TiO2 nanotube composite coatings on titanium[J]. Appl Surf Sci, 2014, 314: 348–357.
[9] WU H B, ZHANG X Y, GENG Z H, et al. Preparation, antibacterial effects and corrosion resistant of porous Cu-TiO2 coatings[J]. Appl Surf Sci, 2014, 308: 43–49.
[10] TIAN P, HU H J, WANG H, et al. TiO2/CaF2 composite coating on titanium for biomedical application[J]. Mater Lett, 2014, 117: 98–100.
[11] CHEN Y, GAO A, BAI L, et al. Antibacterial, osteogenic, and angiogenic activities of SrTiO3 nanotubes embedded with Ag2O nanoparticles[J]. Mater Sci Eng: C, 2017, 75: 1049–1058.
[12] YANG L, PEREZ-AMODIO S, EVERTS V, et al. The effects of inorganic additives to calcium phosphate on in vitro behavior of osteoblasts and osteoclasts[J]. Biomaterials, 2010, 31(11): 2976–2989.
[13] SUN L, CHOW L C. Preparation and properties of nano-sized calcium fluoride for dental applications[J]. Dent Mater, 2008, 24(1): 111–116.
[14] OVERGAARD S, LIND M, GLERUP H, et al. Hydroxyapatite and fluorapatitecoatings for fixation of weight loaded implants[J]. Clin Orthop Relat Res, 1997, 336, 286–296.
[15] LI Z, HUANG B, MAI S, et al. Effects of fluoridation of porcine hydroxyapatite on osteoblastic activity of human MG63 cells[J]. Sci Technol Adv Mater, 2015, 16(3): 1019–1020.
[16] TIAN P, HU H J, WANG H. TiO2/CaF2 composite coating on titanium for biomedical application[J]. Mater Lett, 2014, 117: 98–100.
[17] MUKHOPADHYAY A, BASAK S, DAS J K, et al. Ag-TiO2 nanoparticle codoped SiO2 films on ZrO2 barrier-coated glass substrates with antibacterial activity in ambient condition[J]. ACS Appl Mater Intl, 2010, 2(9): 2540–2546.
[18] 卢志华,孙康宁. 载银羟基磷灰石的制备与表征[J]. 稀有金属材料与工程, 2009, 38(S1): 56–60.
LU Zhihua, SUN Kangning. Rare Met Mater Eng(in Chinese), 2009, 38(S1): 56–60.
[19] JAISWAL S, MCHALE P, DUFFY B. Preparation and rapid analysis of antibacterial silver, copper and zinc doped sol-gel surfaces[J]. Colloids Surf B: Biointerfaces, 2012, 94: 99–104.
[20] LI B E, LIU X Y, MENG F H, et al. Preparation and antibacterial properties of plasma sprayed nano-titania/silver coatings[J]. Mater Chem Phys, 2009, 118(1): 99–104.
[21] KELLY P J, LI H, WHITEHEAD K A, et al. A study of the antimicrobial and tribological properties of TiN/Ag nanocomposite coatings[J]. Surf Coat Tech, 2009, 204(6-7): 1137–1140.
[22] MUNGKALASIRI J, BEDEL L, EMIEUX F, et al. DLI-CVD of TiO2–Cu antibacterial thin films: Growth and characterization[J]. Surf Coat Tech, 2009, 204(6): 887–892.
[23] KUMARI R, MAJUMDAR J D. Microstructure and surface mechanical properties of plasma spray deposited and post spray heat treated hydroxyapatite (HA) based composite coating on titanium alloy (Ti-6Al-4V) substrate[J]. Mater Charact, 2017, 131(5): 12–20.
[24] 何涛, 徐可为, 憨勇. 等离子喷涂-水热处理制备二氧化钛-羟基磷灰石复合涂层[J]. 硅酸盐学报, 2003, 31(1): 95-98.
HE Tao, XU Kewei, HAN Yong. J Chin Ceram Soc, 2003, 31(1): 95–98.
[25] RAMPERSAD S N. Multiple applications of alamar blue as an indicator of metabolic function and cellular health in cell viability bioassays[J]. Sensors, 2012, 12(9): 12347–12360.
[26] YANG G J, LI C J, HAN F, et al. Microstructure and photocatalytic performance of high velocity oxy-fuel sprayed TiO2 coatings[J]. Thin Solid Films, 2004, 466(1/2): 81–85.
[27] TOKI S M O. Fabrication and properties of TiO2 photo-catalytic coatings by thermal spraying with TiO2-Al agglomerated powder[J]. J High Temp Soc, 2001, 27(4): 274–279.
[28] PING L, LU X H. Progress in Research on Effects of Metal Ion Dopants on Crystal Phase Transformation of TiO2[J]. Mater Rev, 2006, 20(9): 13–16.
[29] LI Y P, XU X W, WANG B, et al. Research on the Fluxed Effect of LiF and B2O3[J]. J Univ Sci Technol Beijing, 2002, 24(4): 429–431.
[30] GAO X, JIANG L. Biophysics: Water-repellant legs of water striders[J]. Nature, 2004, 432(7013): 36.
[31] BARTHLOTT W, NEINHUIS C. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta, 1997, 202(1): 1–8.
[32] LI G S, JIN M F, WEI G, et al. On wettability of binding phase in fluorine-bearing sinter[J]. Iron Steel, 2007, 42(8): 12–16.
[33] NIE X, LEYLAND A, MATTHEWS A. Deposition of layered bioceramic hydroxyapatite/TiO2 coatings on titanium alloys using a hybrid technique of micro-arc oxidation and electrophoresis[J]. Surf ?Coat Tech, 2000, 125(1): 407–414.
[34] ZAVERI N, MAHAPATRA M, DECEUSTER A, et al. Corrosion resistance of pulsed laser-treated Ti–6Al–4V implant in simulated biofluids[J]. Electrochim Acta, 2008, 53(15): 5022–5032.
[35] LI J X, YANG D Z, SHI F, et al. Sol–gel deposited TiO2 film on NiTi surgical alloy for biocompatibility improvement[J]. Thin Solid Films, 2003, 429(1-2): 225–230.
[36] 莫尊理, 胡惹惹, 王雅雯, 等. 抗菌材料及其抗菌机理[J]. 材料导报A: 综述篇, 2014, 28(1): 50-52.
MO Zunli, HU Rere, WANG Yawen, et al. Mater Rev(in Chinese), 2014, 28(1): 50–52.
京公网安备 11010802024188号