首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
电场改善微生物水泥胶结砂均匀性
作者:邵光辉1?2?黄容聘1?
单位:1.?南京林业大学土木工程学院?南京?210037?2.?江苏省水土保持与生态修复重点实验室?南京?210037?
关键词:微生物水泥?微生物注浆?碳酸钙空间分布?均匀性?电场?
分类号:TU522.07
出版年,卷(期):页码:2018,46(11):0-0
DOI:10.14062/j.issn.0454-5648.2018.11.12
摘要:

?胶结不均匀是目前微生物水泥研究与应用过程中普遍存在的问题,微生物分布不均匀和矿化反应不均匀是产生该问题的根本原因。通过开展水平一维渗透微生物注浆试验,对直流电场作用改善微生物水泥胶结砂不均匀问题进行研究。结果表明:在50 mV/cm~125 mV/cm的直流电场作用下,砂柱内巴氏芽孢杆菌发生了迁移速率为0.64~3.80 cm/h的电泳迁移,继而改变了微生物矿化产生的碳酸钙分布特征。直流电场作用不仅使碳酸钙空间分布相对均匀,而且还导致碳酸钙晶体的形貌、胶结砂颗粒的方式发生变化,使砂柱的无侧限抗压强度提高40%以上,并对砂柱的应力-应变特性造成影响。水电解会产生酸性带迁移,但是对微生物水泥胶结的影响不大。

?The inhomogeneity of cementation is a common problem in the application of microbe cement, which is caused by uneven spatial distribution of microorganisms and inhomogeneous mineralization during microbial induced calcite precipitation process. Horizontal one-dimensional biogrouting experiments were conducted on sand columns to investigate the electrokinetic effect on the homogeneity improvement in biogrouting process. The experimental results show that DC electric field of 50 mV/cm—125 mV/cm can transport the microbes to targeted locations via electrophoresis at speed of 0.64–3.80 cm/h, and generate the migration of acid area simultaneously but eliminate most of its influence automatically. Applying DC electric field on sand columns in biogrouting process changes the calcite spatial distribution and made the calcite distribution uniform, affects the calcite crystal morphology and cementing form and the stress-strain behaviors of cemented sand ultimately. Compared with the cemented sand columns without electrokinetic treatment, the unconfined compressive strength of sand columns treated in DC electric field is increased by more than 40%. However, little influence on the hydraulic conductivity of sand column in DC electric field occurs. A key factor affecting the spatial distribution of calcite is the electrophoresis of sporosarcina pasteurii.

基金项目:
国家自然科学基金(51578293);江苏高校优势学科建设工程资助项目(PAPD)。
作者简介:
参考文献:

?[1] 荣辉, 钱春香, 张磊, 等. 微生物水泥的胶结过程[J]. 硅酸盐学报, 2015, 43(8): 1067–1075.

RONG Hui, QIAN Chunxiang, ZHANG Lei, et al. J Chin Ceram Soc, 2015, 43(8): 1067–1075.
[2] 任立夫, 钱春香. 碳酸酐酶微生物沉积碳酸钙修复水泥基材料表面裂缝[J]. 硅酸盐学报, 2014, 42(11): 1389–1395.?
REN Lifu, QIAN Chunxiang. J Chin Ceram Soc, 2014, 42(11): 1389–1395.
[3] CHU J, STABNIKOV V, IVANOV V. Microbially induced calcium carbonate precipitation on surface or in the bulk of soil[J]. Geomicrobiol J, 2012, 29(6): 544–549.
[4] 荣辉, 钱春香, 李龙志. 微生物水泥的胶结机理[J]. 硅酸盐学报,2013 , 41 (3): 314–319.
RONG Hui, QIAN Chunxiang, LI Longzhi. J Chin Ceram Soc, 2013, 41(3): 314–319.
[5] 刘鹏, 邵光辉, 赵志峰, 等. 微生物水泥矿化过程受环境中生物的影响[J]. 硅酸盐学报, 2017, 45(11): 1642–1648.
LIU Peng, SHAO Guanghui, ZHAO Zhifeng, et al. J Chin Ceram Soc, 2017, 45(11): 1642–1648.
[6] DEJONG J T, SOGA K, KAVAZANJIANE, et al. Biogeochemical processes and geotechnical applications: Progress, opportunities and challenges[J]. Geotechnique, 2013, 63(4): 287–301.?
[7] 钱春香, 王安辉, 王欣. 微生物灌浆加固土体研究进展[J]. 岩土力学, 2015, 36(6): 1537–1548.
QIAN Chunxiang, WANG Anhui, WANG Xin. Rock Soil Mech ? ? (in Chinese), 2015, 36(6): 1537–1548.
[8] WHIFFIN V S. Microbial CaCO3 precipitation for the production of biocement[D]. Australia: Murdoch University, 2004.
[9] Al QABANY A, SOGA K. Effect of chemical treatment used in MICP on engineering properties of cemented soils[J]. Géotechnique, 2013, 63(4): 331–339.
[10] HARKES M P, VAN PAASSEN L A, BOOSTER J L, et al. Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement[J]. Ecol Eng, 2010, 36(2): 112–117.?
[11] MARTINEZ B C, DEJONG J T, GINN J, et al. Experimental optimization of microbial-induced carbonate precipitation for soil improvement[J]. J Geotech Geoenviron Eng, 2013,139(4), 587–598.
[12] BARKOUKI T H, MARTINEZ B C, MORTENSEN B M, et al. Forward and inverse bio-geochemical modeling of microbially induced calcite precipitation in half-meter column experiments[J]. Transport in Porous Media, 2011, 90(1): 23–39.
[13] KEYKHA H A, HUAT B B K, ASADI A. Electrokinetic stabilization of soft soil using carbonate-producing bacteria[J]. Geotech Geol Eng , 2014 , 32(4): 739–747.
[14] KEYKHA H A, HUAT B B K, ASADI A, et al. Electrokinetic properties of pasteurii and aquimarinabacteria[J]. Environ Geotech, 2014, 2(3): 181–188.
[15] 沈根祥, 周海花, 罗启仕, 等. 直流电场对根际土壤微生物群落的影响及其机理[J]. 农业环境科学学报, 2008, 27(3): 920–925.?
SHEN Genxiang, ZHOU Haihua, LUO Qishi, et al. J Agro-Environ Sci (in Chinese), 2008, 27(3): 920–925.?
[16] LUO Q S, WANG H, ZHANG X H, et al. Effect of direct electric current on the cell surface properties of phenol- degrading bacteria[J]. Appl Environ Microbiol, 2005, 71(1): 423–427.
[17] 荣辉. 微生物水泥的研制及胶结机理[D]. 南京: 东南大学, 2014.
RONG Hui. Preparation and binding mechanism of microbe cement[Dissatation, in Chinese]. Nanjing: Southeast University, 2014.
[18] MORTENSEN B M,HABER MJ, DEJONG JT, et al. Effects of environmental factors on microbial induced calcium carbonate precipitation[J]. J Appl Microbiol, 2011, 111(2): 338–349.?
[19] WHIFFIN V S, VAN PAASSEN L A, HARKES M P. Microbial carbonate precipitation as a soil improvement technique[J]. Geomicrobiol J, 2007, 24(5): 417–423.
[20] FENG K, MONTOYA B M. Influence of confinement and cementation level on the behavior of microbial-induced calcite precipitated sands under monotonic drained loading[J]. J Geotech Geoenviron Eng, 2016, 142(1): 04015057.
[21] STABNIKOV V, CHU J, IVANOV V, et al. Halotolerant alkalophilic urease-producing bacteria from different climate zones and their application for biocementation of sand[J]. World J Microbiol Biotechnol, 2013, 29(8): 1453–1460.
[22] LI Bing. Geotechnical properties of biocement treated sand and clay[D]. Singapore: Nanyang Technological University, 2014.
[23] 邵光辉, 冯建挺, 赵志峰, 等. 微生物砂浆防护粉土坡面的强度与抗侵蚀性影响因素分析[J]. 农业工程学报, 2017, 33(11): 133–139.?
SHAO Guanghui, FENG Jianting, ZHAO Zhifeng, et al. Transact CSAE (in Chinese), 2017, 33(11): 133–139.
[24] CHENG L, MOHAMED A S. Urease active bioslurry: a novel soil improvement approach based on microbially induced carbonate precipitation[J]. Can Geotech J, 2016, 53(9): 1376–1385.
[25] 刘璐, 沈扬, 刘汉龙, 等. 微生物胶结在防治堤坝破坏中的应用研究[J]. 岩土力学, 2016, 37(12): 3410–3416.
LIU Lu, SHEN Yang, LIU Hanlong, et al. Rock Soil Mech (in Chinese), 2016, 37(12): 3410–3416.
[26] 竹文坤, 罗学刚. 碳酸盐矿化菌诱导碳酸钙沉淀条件的优化[J]. 非金属矿, 2012, 35(3): 1–4.
ZHU Wenkun, LUO Xuegang. Non-Metallic Mines (in Chinese), 2012, 35(3): 1–4.
[27] LUO Q, ZHANG X, WANG H, et al. The use of non-uniform electrokinetics to enhance in situ bioremediation of phenol- contaminated soil[J]. J Hazard Mater, 2005, 121(1–3): 187–194.
?
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号????邮政编码:100831
电话:010-57811253??57811254????
E-mail:jccs@ceramsoc.com