[1] ARMAND M, TARASCON J M. Building better batteries[J]. Nature, 2008, 451(7179): 652–657.?
[2] ZHANG R, LI N W, CHENG X B, et al. Advanced micro/nanostructures for lithium metal anodes[J]. Adv Sci, 2017, 4(3): 1600445 (1–13).
[3] TARASCON J M, ARMAND M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001, 414(6861): 359–367.
[4] MANTHIRAM A, YU X, WANG S. Lithium battery chemistries enabled by solid-state electrolytes[J]. Nat Rev Mater, 2017, 2: 16103 (1–5).
[5] CUSSEN E J. The structure of lithium garnets: cation disorder and clustering in a new family of fast Li+ conductors[J]. Chem Commun. 2006, 37(4): 412–413.
[6] MURUGAN R, THANGADURAI V, WEPPNER W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12[J]. Angew Chem Int Ed, 2007, 46(41): 7778–7781.
[7] RETTENWANDER D, BLAHA P, LASKOWSKI R, et al. DFT study of the role of Al3+ in the fast ion-conductor Li7–3xAl3+xLa3Zr2O12 garnet[J]. Chem Mater, 2014, 26(8): 2617–2623.
[8] KATHARINA M, TEODORO L, ALESSANDRO C. Solid-state electrolytes: revealing the mechanisms of Li-ion conduction in tetragonal and cubic LLZO by first-principles calculations[J]. J Phys Chem C, 2014, 118(13): 6668–6679.?
[9] KC S, LONGO R C, XIONG K, et al. Point defects in garnet-type solid electrolyte (c-Li7La3Zr2O12) for Li-ion batteries[J]. Solid state Ionics, 2014, 261: 100–105.?
[10] REN Y, DENG H, NAN C W, et al. Effects of Li source on microstructure and ionic conductivity of Al-contained Li6.75La3Zr1.75Ta0.25O12 ceramics[J]. J Eur Ceram Soc, 2015, 35(2): 561–572.?
[11] SAKAMOTO J, RANGASAMY E, KIM H, et al. Synthesis of nano-scale fast ion conducting cubic Li7La3Zr2O12[J]. Nanotechnol, 2013, 24(42): 424005.
[12] KOKAL I, SOMER M, NOTTEN P H L, et al. Sol–gel synthesis and lithium ion conductivity of Li7La3Zr2O12 with garnet-related type structure[J]. Solid State Ionics, 2011, 185(1): 42–46.
[13] ZHANG Y, CHEN F, TU R, et al. Field assisted sintering of dense Al-substituted cubic phase Li7La3Zr2O12 solid electrolytes[J]. J Power Sources, 2014, 268: 960–964.
[14] LI Y, WANG Z, LI C, et al. Densification and ionic-conduction improvement of lithium garnet solid electrolytes by flowing oxygen sintering[J]. J Power Sources, 2014, 248: 642–646.
[15] NI J E, CASE E D, SAKAMOTO J S, et al. Room temperature elastic moduli and Vickers hardness of hot-pressed LLZO cubic garnet[J]. J Mater Sci, 2012, 47(23): 7978–7985.
[16] KOTOBUKI M, MUNAKATA H, KANAMURA K. Fabrication of all-solid-state rechargeable lithium-ion battery using mille-feuille structure of Li0.35La0.55TiO3[J]. J Power Sources, 2011, 196(16): 6947–6950.
[17] ZHANG Q, SCHMIDT N, LAN J, et al. A facile method for the synthesis of the Li0.3La0.57TiO3 solid state electrolyte[J]. Chem Commun. 2014, 50(42): 5593–5596.
[18] XIONG Y, TAO H, ZHAO J, et al. Effects of annealing temperature on structure and opt-electric properties of ion-conducting LLTO thin films prepared by RF magnetron sputtering[J]. J Alloy Compd, 2011, 509(5): 1910–1914.
[19] YASUHIRO H, TSUKASA I, HIROO K, et al. Lithium ion conductivity of polycrystalline perovskite La0.672–xLi3xTiO3 with ordered and disordered arrangements of the A-site ions[J]. Solid State Ionics, 1998, 108(1/4): 407–413.
[20] YASUHIRO H, YUJI H, HIROO K, et al. Order–disorder of the A-site ions and lithium ion conductivity in the perovskite solid solution La0.67–xLi3xTiO3 (x=0.11)[J]. Solid State Ionics, 1999, 121(1/4): 245–251.
[21] STRAMARE S, THANGADURAI V, WEPPNER W. Lithium lanthanum titanates: A review[J]. Chem Mater, 2003, 15(21): 3974–3990.
[22] GENG H, MEI A, LIN Y, et al. Effect of sintering atmosphere on ionic conduction and structure of Li0.5La0.5TiO3 solid electrolytes[J]. Mater Sci Eng B. 2009, 164(2): 91–95.
[23] BAN C W, CHOI G M. The effect of sintering on the grain boundary conductivity of lithium lanthanum titanates[J]. Solid State Ionics, 2001, 140(3/4): 285–292.
[24] MEI A, WANG X, NAN C W, et al. Enhanced ionic transport in lithium lanthanum titanium oxide solid state electrolyte by introducing silica[J]. Solid State Ionics, 2008, 179(39): 2255–2259.
[25] MEI A, WANG X, NAN C W, et al. Role of amorphous boundary layer in enhancing ionic conductivity of lithium-lanthanum-titanate electrolyte[J]. Electrochim Acta, 2010, 55(8): 2958–2963.
[26] KOBAYASHI Y, MIYASHIRO H, TAKEUCHI T, et al. All-solid-state lithium secondary battery with ceramic/polymer composite electrolyte[J]. Solid State Ionics, 2002, S152–S153(02): 137–142.
[27] GOODENOUGH J B, HONG H Y P, KAFALAS J A. Fast Na+-ion transport in skeleton structures[J]. Mater Res Bull, 1976, 11(2): 203–220.
[28] KOTOBUKI M, KOISHI M. Preparation of Li1.5Al0.5Ti1.5(PO4)3 solid electrolyte via a sol-gel route using various Al sources[J]. Ceram Int, 2013, 39(4): 4645–4649.
[29] KOTOBUKI M, KOISHI M, KATO Y. Preparation of Li1.5Al0.5Ti1.5(PO4)3 solid electrolyte via a co-precipitation method[J]. Ionics, 2013, 19(12): 1945–1948.
[30] EPP V, MA Q, HAMMER E M, et al. Very fast bulk Li ion di?usivity in crystalline Li1.5Al0.5Ti1.5(PO4)3 as seen using NMR relaxometry[J]. Phys Chem Chem Phys, 2015, 17: 32115–32121.
[31] ZHANG T, IMANISHI N, HASEGAWA S, et al. Water-stable lithium anode with the three-layer construction for aqueous lithium–air secondary batteries[J]. Electrochem Solid State Lett, 2009, 12(7): A132–A137.
[32] THOKCHOM J S, KUMAR B. Composite effect in superionically conducting lithium aluminium germanium phosphate based glass-ceramic[J]. J Power Sources, 2008, 185(1): 480–485.
[33] XU X, WEN Z, WU X, et al. Lithium ion-conducting glass-ceramics of Li1.5Al0.5Ge1.5(PO4)3–xLi2O (x=0.0-0.20) with good electrical and electrochemical properties[J]. J Am Ceram Soc, 2007, 90(9): 2802–2806.
[34] BRAGA M H, FERREIRA J A, STOCKHAUSEN V, et al. Novel Li3ClO based glasses with superionic properties for lithium batteries[J]. J Mater Chem A, 2014, 2(15): 5470–5480.
[35] BRAGA M H, MURCHISON A J, Ferreira J A, et al. Glass-amorphous alkali-ion solid electrolytes and their performance in symmetrical cells[J]. Energy Environ Sci, 2016, 9(3): 948–954.
[36] BATES J B, DUDNEY N J, GRUZALSKI G R, et al. Electrical properties of amorphous lithium electrolyte thin films[J]. Solid State Ionics, 1992, 53–56: 647–654.
[37] HERBERT E G, TENHAEFF W E, DUDNEY N J, et al. Mechanical characterization of LiPON films using nanoindentation[J]. Thin Solid Films, 2011, 520(1): 413–418.
[38] JOO K H, SOHN H J, VINATIER P, et al. Lithium ion conducting lithium sulfur oxynitride thin film[J]. Electrochem Solid State Lett, 2004, 7(8): A256–A258.
[39] WU F, LIU Y, CHEN R, et al. Preparation and performance of novel Li-Ti-Si-P-O-N thin-film electrolyte for thin-film lithium batteries[J]. J Power Sources, 2009, 189(1): 467–470.
[40] XIE J, OUDENHOVEN J F M, HARKS P P R M L, et al. Chemical vapor deposition of lithium phosphate thin-films for 3D all-solid-state Li-ion batteries[J]. J Electrochem Soc, 2015, 162(3): A249–A254.
[41] WEST W C, HOOD Z D, ADHIKARI S P, et al. Reduction of charge-transfer resistance at the solid electrolyte-electrode interface by pulsed laser deposition of films from a crystalline Li2PO2N source[J]. J Power Sources, 2016, 312: 116–122.
[42] NISULA M, SHINDO Y, KOGA H, et al. Atomic layer deposition of lithium phosphorus oxynitride[J]. Chem Mater, 2015, 27(20): 6987–6993.
[43] PEARSE A J, SCHMITT T E, FULLER E J, et al. Nanoscale solid state batteries enabled by thermal atomic layer deposition of a lithium polyphosphazene solid state electrolyte[J]. Chem Mater, 2017, 29(8): 3740–3753.
[44] ZHENG N, BU X, FENG P. Synthetic design of crystalline inorganic chalcogenides exhibiting fast-ion conductivity[J]. Nature, 2003, 426(6965): 428–432.
[45] KANNO R, HATA T, KAWAMOTO Y, et al. Synthesis of a new lithium ionic conductor, thio-LISICON-lithium germanium sulfide system[J]. Solid State Ionics, 2000, 130(1): 97–104.
[46] KAMAYA N, HOMMA K, YAMAKAWA Y, et al. A lithium superionic conductor[J]. Nat Mater, 2011, 10(9): 682–689.
[47] KATO Y, HORI S, SAITO T, et al. High-power all-solid-state batteries using sulfide superionic conductors[J]. Nat Energy, 2016, 1: 16030 (1–3).
[48] KOMIYA R, HAYASHI A, MORIMOTO H, et al. Solid state lithium secondary batteries using an amorphous solid electrolyte in the system (100-x)(0.6Li2S-0.4SiS2)·xLi4SiO4, obtained by mechanochemical synthesis[J]. Solid State Ionics, 2001, 140(1/2): 83–87.
[49] OHTOMO T, HAYASHI A, TATSUMISAGO M, et al. All-solid-state lithium secondary batteries using the 75Li2S-25P2S5, glass and the 70Li2S-30P2S5, glass-ceramic as solid electrolytes[J]. J Power Sources, 2013, 233: 231–235.
[50] MIZUNO F, HAYASHI A, TADANAGA K, et al. New, highly ion-conductive crystals precipitated from Li2S-P2S5 glasses[J]. Adv Mater, 2005, 17(7): 918–921.?
[51] HAYASHI A, HAMA S, MINAMI T, et al. Formation of superionic crystals from mechanically milled Li2S-P2S5 glasses[J]. Electrochem Commun, 2003, 5(2): 111–114.
[52] UJIIE S, HAYASHI A, TATSUMISAGO M. Structure, ionic conductivity and electrochemical stability of Li2S-P2S5-LiI glass and glass-ceramic electrolytes[J]. Solid State Ionics, 2012, 211: 42–45.
[53] UJIIE S, INAGAKI T, HAYASHI A, et al. Conductivity of 70Li2S·30P2S5 glasses and glass–ceramics added with lithium halides[J]. Solid State Ionics, 2014, 263: 57–61.
[54] OHTOMO T, HAYASHI A, TATSUMISAGO M, et al. Suppression of H2S gas generation from the 75Li2S·25P2S5 glass electrolyte by additives[J]. J Mater Sci, 2013, 48(11): 4137–4142.
[55] ARMAND M B, CHABAGNO J M, DUCLOT M J. Poly-ethers as solid electrolytes[C]//Intenational Conference on Fast Ion Transport in Solids, Electrodes and Electrolytes. USA: Lake Geneva, WI. 1979, 131–136.
[56] WRIGH P V. Polymer electrolytes—The early days[J]. Electrochim Acta, 1998, 43(10/11): 1137–1143.
[57] CHU P P, JEN H P, FANGREY LO A, et al. Exceedingly high lithium conductivity in novolac type phenolic resin/PEO blends[J]. Macromolecules, 1999, 32(14): 4738–4740.
[58] SENGWA R J, DHATARWAL P, CHOUDHARY S. Role of preparation methods on the structural and dielectric properties of plasticized polymer blend electrolytes: Correlation between ionic conductivity and dielectric parameters[J]. Electrochim Acta, 2014, 142: 359–370.
[59] KONO M. Network polymer electrolytes with free chain ends as internal plasticizer[J]. J Electrochem Soc, 1998, 145(5): 1521–1527.
[60] YOUNG N P, DEYAUX D, KHURANA R, et al. Investigating polypropylene- poly(ethylene oxide)-polypropylene triblock copolymers as solid polymer electrolytes for lithium batteries[J]. Solid State Ionics, 2014, 263(10): 87–94.
[61] PORCARELLI L, GERBALDI C, BELLA F, et al. Super soft all-ethylene xxide polymer electrolyte for safe all-solid lithium batteries[J]. Sci Rep, 2016, 6(1): 19892.
[62] PAN Q, SMITH D M, QI H, et al. Hybrid electrolytes with controlled network structures for lithium metal batteries[J]. Adv Mater, 2015, 27(39): 5995–6001.
[63] OKUMURA T, NISHIMURA S. Lithium ion conductive properties of aliphatic polycarbonate[J]. Solid State Ionics, 2014, 267: 68–73.
[64] TOMINAGA Y, YAMAZAKI K. Fast Li-ion conduction in poly(ethylene carbonate)-based electrolytes and composites filled with TiO2 nanoparticles[J]. Chem Commun, 2014, 50(34): 4448–4450.
[65] MORIOKA T, NAKANO K, TOMINAGA Y. Ion-conductive properties of a polymer electrolyte based on ethylene carbonate/ethylene oxide random copolymer[J]. Macromole Rapid Commun, 2017, 38(8): 1600652 (1–5.).
[66] SUN B, MINDEMARK J, EDSTROM K, et al. Polycarbonate-based solid polymer electrolytes for Li-ion batteries[J]. Solid State Ionics, 2014, 262: 738–742.
[67] MINDEMARK J, SUN B, TORMA E, et al. High-performance solid polymer electrolytes for lithium batteries operational at ambient temperature[J]. J Power Sources, 2015, 298: 166–170.
[68] ZHANG J, ZHAO J, YUE L, et al. Safety-reinforced poly(propylene carbonate)-based all-solid-state polymer electrolyte for ambient-temperature solid polymer lithium batteries[J]. Adv Energy Mater, 2015, 5(24): 1501082.
[69] CHAI J, LIU Z, MA J, et al. In situ generation of poly (vinylene carbonate)-based solid electrolyte with interfacial stability for LiCoO2 lithium batteries[J]. Adv Sci, 2017, 4(2): 1600377.
[70] OH B, VISSERS D, ZHANG Z, et al. New interpenetrating network type poly(siloxane-g-ethylene oxide) polymer electrolyte for lithium battery[J]. J Power Sources, 2003, S119-S121(6): 442–447.
[71] WANG F, HU C, LO S, et al. The investigation of electrochemical properties and ionic motion of functionalized copolymer electrolytes based on polysiloxane[J]. Solid State Ionics, 2009, 180(4/5): 405–411.
[72] HOOPER R, LYONS L J, MAPES M K, et al. Highly conductive siloxane polymers[J]. Macromolecules, 2001, 34(4): 931–936.
[73] ROSSI N A A, WANG Q, Amine K, et al. Silicon-containing carbonates-synthesis, characterization, and additive effects for silicon-based polymer electrolytes[J]. Silicon, 2010, 2(4): 201–208.
[74] LI J, LIN Y, YAO H, et al. Tuning thin-film electrolyte for lithium battery by grafting cyclic carbonate and combed poly(ethylene oxide) on polysiloxane[J]. Chem Sus Chem, 2014, 7(7): 1901–1908.
[75] WALKER C N, VERSEK C, TOUMINEN M, et al. Tunable networks from thiolene chemistry for lithium ion conduction[J]. ACS Macro Lett, 2012, 1(6): 737–741.
[76] FAN L Z, NAN C W, ZHAO S. Effect of modified SiO2 on the properties of PEO-based polymer electrolytes[J]. Solid State Ionics, 2003, 164(1/2): 81–86.
[77] CROCE. F, SETTIMI. L, SCROSATI. B, et al. Nanocomposite, PEO-LiBOB polymer electrolytes for low temperature, lithium rechargeable batteries[J]. J New Mater Electrochem Systems, 2006, 9(1): 3–9.
[78] ITOH T, ICHIKAWA Y, UNO T, et al. Composite polymer electrolytes based on poly(ethylene oxide), hyperbranched polymer, BaTiO3 and LiN(CF3SO2)2[J]. Solid State Ionics, 2003, 156(3/4): 393–399.
[79] FAN L Z, NAN C W, DANG Z. Effect of modified montmorillonites on the ionic conductivity of (PEO)16LiClO4, electrolytes[J]. Electrochim Acta, 2002, 47(21): 3541–3544.
[80] JUNG Y C, LEE S M, CHOI J H, et al. All solid-state lithium batteries assembled with hybrid solid electrolytes[J]. J Electrochem Soc, 2015, 162(4): A704–A710.
[81] ZHAO Y, WU C, PENG G, et al. A new solid polymer electrolyte incorporating Li10GeP2S12 into a polyethylene oxide matrix for all-solid-state lithium batteries[J]. J Power Sources, 2016, 301: 47–53.
[82] ZHANG J, ZHAO N, ZHANG M, et al. Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: Dispersion of garnet nanoparticles in insulating polyethylene oxide[J]. Nano Energy, 2016, 28: 447–454.
[83] LIU W, LIU N, SUN J, et al. Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers[J]. Nano Lett, 2015, 15: 2740–2745
[84] GERBALDI C, NAIR J R, KULANDAINATHAN M A, et al. Innovative high performing metal organic framework (MOF)-laden nanocomposite polymer electrolytes for all-solid-state lithium batteries[J]. J Mater Chem A, 2014, 2(26): 9948–9954.
[85] ZHOU W, GAO H, GOODENOUGH J B. Low-cost hollow mesoporous polymer spheres and all-solid-state lithium, sodium batteries[J]. Adv Energy Mater, 2016, 6(1): 1501802.
[86] YAMADA H. Interfaces of solid electrolytes: fundamentals and applications[J]. J Indian Inst Sci, 2016, 96(4): 315–323.
[87] WU J F, PANG W K, PETERSON V K, et al. Garnet-type fast Li-ion conductors with high ionic conductivities for all-solid-state batteries[J]. ACS Appl Mater Interface, 2017, 9(14): 12461–12468.
[88] ZARABIAN M, BARTOLINI M, PEREIRA ALMAO P, et al. X-ray photoelectron spectroscopy and AC impedance spectroscopy studies of Li-La-Zr-O solid electrolyte thin film/LiCoO2 cathode interface for all-solid-state Li batteries[J]. J Electrochem Soc, 2017, 164(6): A1133–A1139.
[89] LIU T, REN Y, NAN C W, et al. Achieving high capacity in bulk-type solid-state lithium ion battery based on Li6.75La3Zr1.75Ta0.25O12 electrolyte: Interfacial resistance[J]. J Power Sources, 2016, 324: 349–357.
[90] KATO T, HAMANAKA T, YAMAMOTO K, et al. In-situ Li7La3Zr2O12/LiCoO2 interface modification for advanced all-solid-state battery[J]. J Power Sources, 2014, 260: 292–298.
[91] VAN DEN BROEK J, AFYON S, RUPP J L M. Interface-engineered all-solid-state Li-ion batteries based on garnet-type fast Li+ conductors[J]. Adv Energy Mater, 2016, 6(19): 1600736.?
[92] REN Y, SHEN Y, NAN C W, et al. Direct observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte[J]. Electrochem Commun, 2015, 57: 27–30.
[93] HAN X, GONG Y, FU K K, et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries[J]. Nat Mater, 2016, 16(5): 572–575.
[94] LI Y, XU B, XU H, et al. Hybrid polymer/garnet electrolyte with a small interfacial resistance for lithium-ion batteries[J]. Angew Chem Int Ed, 2017, 56(3): 753–756.
[95] ZHOU W, WANG S, LI Y, et al. Plating a dendrite-free lithium anode with a polymer/ceramic/polymer sandwich electrolyte[J]. J Am Chem Soc, 2016, 138(30): 9385–9388.
[96] OHTA N, TAKADA K, ZHANG L, et al. Enhancement of the high-rate capability of solid-state lithium batteries by nanoscale interfacial modification[J]. Adv Mater, 2006, 18(17): 2226–2229.
[97] TAKADA K, OHTA N, ZHANG L, et al. Interfacial modification for high-power solid-state lithium batteries[J]. Solid State Ionics, 2008, 179(27/32): 1333–1337.
[98] SEINO Y, OTA T, TAKADA K. High rate capabilities of all-solid-state lithium secondary batteries using Li4Ti5O12-coated LiNi0.8Co0.15Al0.05O2 and a sulfide-based solid electrolyte[J]. J Power Sources, 2011, 196(15): 6488–6492.
[99] OHTA N, TAKADA K, SAKAGUCHI I, et al. LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries[J]. Electrochem Commun, 2007, 9(7): 1486–1490.
[100] YAO X, LIU D, WANG C, et al. High-energy all-solid-state lithium batteries with ultralong cycle life[J]. Nano Lett, 2016, 16(11): 7148–7154.
[101] VISBAL H, AIHARA Y, ITO S, et al. The effect of diamond-like carbon coating on LiNi0.8Co0.15Al0.05O2 particles for all solid-state lithium-ion batteries based on Li2S–P2S5 glass-ceramics[J]. J Power Sources, 2016, 314: 85–92.
[102] WHITELEY J M, WOO J H, HU E, et al. Empowering the lithium metal battery through a silicon-based superionic conductor[J]. J Electrochem Soc, 2014, 161(12): A1812–A1817.
[103] WENZEL S, RANDAU S, LEICHTWEISS T, et al. Direct observation of the interfacial instability of the fast ionic conductor Li10GeP2S12 at the lithium metal anode[J]. Chem Mater, 2016, 28(7): 2400–2407.
[104] WENZEL S, WEBER D A, LEICHTWEISS T, et al. Interphase formation and degradation of charge transfer kinetics between a lithium metal anode and highly crystalline Li7P3S11 solid electrolyte[J]. Solid State Ionics, 2016, 286: 24–33.
[105] YAMADA T, ITO S, OMODA R, et al. All solid-state lithium–sulfur battery using a glass-type P2S5-Li2S electrolyte: benefits on anode kinetics[J]. J Electrochem Soc, 2015, 162(4): A646–A651.
?
|