首页期刊信息编委及顾问期刊发行联系方式使用帮助常见问题ENGLISH
位置:首页 >> 正文
高温电解水蒸汽制氢关键材料研究进展
作者:任耀宇?马景陶?昝青峰?林旭平?张勇?邓长生?
单位:新型陶瓷与精细工艺国家重点实验室?清华大学核能与新能源技术研究院?精细陶瓷北京市重点实验室?北京?100084?
关键词:高温固体氧化物?电解?制氢?电解池?
分类号:TB321
出版年,卷(期):页码:2011,39(7):29-36
DOI:
摘要:

高温电解水蒸汽制氢技术是高温固体氧化物燃料电池发电的逆过程。实现这种技术的关键是电解池材料。本文综述了高温电解水蒸汽制氢技术的优点,及国内外该项技术的研究现状和发展趋势,并简要介绍了在美国用此技术进行二氧化碳、水蒸汽共电解制备合成气体(一氧化碳+氢气)的进展情况。对高温电解水蒸汽制氢技术所涉及关键材料存在的问题进行了归纳总结,并提出从优化结构和选择新材料体系两方面入手的解决办法。

online click open
redirect i dreamed my wife cheated on me unfaithful husband
my husband cheated on me men who have affairs women who cheat on husband

High-temperature steam electrolysis (HTSE) is an inverse process of high-temperature solid state fuel cells. The key aspect for the technology application is the materials for electrolysis cells. This review summerizes the merits of the HTSE, and presents the recent development on the HTSE, and summarizes the merits of the HTSE. Also, this review introduces the progress of the "co-electrolysis" of carbon dioxide and steam for syngas (CO+H2) production in the United States. In addition, some problems of developing the key materials are discussed. The structural optimization and development of novel material systems are proposed.

how to cheat read wife cheat story
how do i know if my wife has cheated infidelity in marriage read
open cheat women go
read why people cheat in relationships signs of infidelity
My wife cheated on me read reasons married men cheat
why do wife cheat on husband women that cheat with married men how to cheat wife
cialis coupon cialis coupon cialis coupon
基金项目:
清华大学新型陶瓷与精细工艺国家重点实验室自主课题资助及清华大学自主科研经费(20101081790)及高温堆制氢关键技术研究(2010ZX06901-020)资助项目。
作者简介:
博士研究生
printable coupons for cialis drug discount coupons coupon for free cialis
参考文献:

[1] FUJIWARA S, KASAI S, YAMAUCHI H, et al. Hydrogen production by high temperature electrolysis with nuclear reactor [J]. Prog Nucl Energy, 2008, 50(2-6): 422-426. [2] SPACIL H S, TEDMON Jr C S. Electrochemical dissociation of water vapor in solid oxide electrolyte cells I. Thermodynamics and cell characteristics [J]. J Electrochem Soc, 1969, 116(12): 1618-1626. [3] SPACIL H S, TEDMON Jr. C S. Electrochemical dissociation of water vapor in solid oxide electrolyte cells II. Materials, fabrication, and properties [J]. J Electrochem Soc, 1969, 116(12): 1627-1633. [4] DOENITZ W, SCHMIDBERGER R, STEINHEIL E, et al. Hydrogen production by high temperature electrolysis of water vapour [J]. Int J Hydrog Energy, 5: 55-63. [5] DOENITZ W, SCHMIDBERGER R. Concepts and design for scaling up high-temperature water vapor electrolysis [J]. Int J Hydrog Energy, 1982, 7: 321-330. [6] DOENITZ W, ERDLE E. High-temperature electrolysis of water vapor status of development and perspective for application [J]. Int J Hydrog Energy, 1985, 10: 291-295. [7] QUANDT K H, STREICHER R. Concept and design of a 3.5 MW pilot plant for high temperature electrolysis of water vapor [J]. Int J Hydrog Energy, 1986, 11(5): 309-315. [8] DOENITZ W, DIETRICH G, ERDLE E, et al. Electrochemical high temperature technology for hydrogen production or direct electicity generation [J]. Int J Hydrog Energy, 1988, 13: 283-287. [9] MASKALICK N J. High temperature electrolysis cell performance characterization [J]. Int J Hydrog Energy, 1986, 11(9): 563-570. [10] JENSEN S H, LARSEN P H, MOGENSEN M. Hydrogen and synthetic fuel production from renewable energy sources [J]. Int J Hydrog Energy, 2007, 32: 3253-3257. [11] O'BRIEN J E, STOOTS C M, HERRING J S, et al. Performance measurements of solid-oxide electrolysis cells for hydrogen production [J]. J Fuel Cell Sci Technol, 2005, 2: 156-163. [12] O'BRIEN J E, STOOTS C M, HERRING J S, et al. Hydrogen production performance of a 10-cell planar solid-oxide electrolysis stack [J]. J Fuel Cell Sci Technol, 2006, 3: 213-219. [13] STOOTS C M, O'BRIEN J E, CONDIE K G, et al. High-temperature electrolysis for large-scale hydrogen production from nuclear energy-Experimental investigations [J]. Int J Hydrog Energy, 2010, 35: 4861-4870. [14] HARVEGO E A, MCKELLAR M G, O'BRIEN J E, et al. Parametric evaluation of large-scale high-temperature electrolysis hydrogen production using different advanced nuclear reactor heat sources [J]. Nucl Eng Des, 2009, 239: 1571-1580. [15] HARVEGO E A, MCKELLAR M G, SOHAL M S, et al. System evaluation and economic analysis of a nuclear reactor powered high-temperature electrolysis hydrogen-production plant [J]. J Energy Resour Technol, 2010, 132: 021005. [16] HAUCH A. Solid oxide electrolysis cells - performance and durability [D]. Denmark: Ris? National Laboratory, Technical University of Denmark, 2007. [17] 张文强. 固体氧化物电解池阳极材料BSCF制备及性能研究[D]. 北京: 清华大学, 2008. ZHANG Wenqiang. Preparation of BSCF and it's performance as anode of SOEC (in Chinese, dissertation). Beijing: Tsinghua University, 2008. [18] YU B, ZHANG W Q, XU J M, et al. Microstructural characterization and electrochemical properties of Ba0.5Sr0.5Co0.8Fe0.2O3-δ and its application for anode of SOEC [J]. Int J Hydrog Energy, 2008, 33: 6873- 6877. [19] LIANG M D, YU B, WEN M F, et al. Preparation of LSM-YSZ composite powder for anode of solid oxide electrolysis cell and its activation mechanism [J]. J Power Sources, 2009, 190: 341-345. [20] KONG J R, ZHANG Y, DENG C S, et al. Synthesis and electrochemical properties of LSM and LSF perovskites as anode materials for high tem- perature steam electrolysis [J]. J Power Sources, 2009, 186: 485-489. [21] LIU M Y, YU B, XU J M, et al. Thermodynamic analysis of the ef?ciency of high-temperature steam electrolysis system for hydrogen production [J]. J Power Sources, 2008, 177: 493-499. [22] Idaho National Laboratory. Syngas Generation from Co-Electrolysis (Syntrolysis) [EB/OL]. 2007. http://www.inl.gov/featurestories/2007- 03-22.shtml. [23] STOOTS C M, O'BRIEN J E, HARTVIGSEN J. Carbon neutral production of syngas via high temperature electrolytic reduction of steam and CO2 [C] //2007 ASME International Mechanical Engineering Congress and Exposition, Seattle, Washington, USA, 2007: 185-194. [24] STOOTS C M, O'BRIEN J E, HERRING J S, et al. Idaho National Laboratory experimental research in high temperature electrolysis for hydrogen and syngas production [C] // Proceedings of the 4th International Topical Meeting on High Temperature Reactor Technology, Washington, DC, USA, 2008: 1-12. [25] O'BRIEN J E, MCKELLAR M G, STOOTS C M, et al. Parametric study of large-scale production of syngas via high-temperature co- electrolysis [J]. Int J Hydrog Energy, 2009, 34: 4216-4226. [26] STOOTS C M, O'BRIEN J E, HARTVIGSEN J. Results of recent high temperature coelectrolysis studies at the Idaho National Laboratory [J]. Int J Hydrog Energy, 2009, 34: 4208-4215. [27] STOOTS C M, O'BRIEN J E, HERRING J S, et al. Syngas production via high-temperature coelectrolysis of steam and carbon dioxide [J]. J Fuel Cell Sci Technol, 2009, 6: 011014. [28] O'BRIEN J E, MCKELLAR M G, HARVEGO E A, et al. High- temperature electrolysis for large-scale hydrogen and syngas production from nuclear energy - summary of system simulation and economic analyses [J]. Int J Hydrog Energy, 2010, 35: 4808-4819. [29] TU H Y, STIMMING U. Advances, aging mechanisms and lifetime in solid-oxide fuel cells [J]. J Power Sources, 2004, 127: 284-293. [30] SIMWONIS D, TIETZ F, STOVER D. Nickel coarsening in annealed Ni/8YSZ anode substrates for solid oxide fuel cells [J]. Solid State Ionics, 2000, 132: 241-251. [31] HAUCH A, JENSEN S H, RAMOUSSE S, et al. Performance and durability of solid oxide electrolysis cells [J]. J Electrochem Soc, 2006, 153(9): A1741-A1747. [32] HAUCH A, JENSEN S H, BILDE-S?RENSEN J B, et al. Silica segregation in the Ni/YSZ electrode [J]. J Electrochem Soc, 2007, 154(7): A619-A626. [33] HAUCH A, BOWEN J R, KUHN L T, et al. Nanoscale chemical analysis and imaging of solid oxide cells [J]. Electrochem Solid State Lett, 2008, 11(3): B38-B41. [34] SOHAL M S. Degradation in solid oxide cells during high temperature electrolysis [R]. INL/EXT-09-15617, Idaho: Idaho National Laboratory, 2009. [35] HAUCH A, EBBESEN S D, JENSEN S H, et al. Highly ef?cient high temperature electrolysis [J]. J Mater Chem, 2008, 18: 2331-2340. [36] MOMMA A, KATO T, KAGA Y, et al. Polarization behavior of high temperature solid oxide electrolysis cells (SOEC)[J]. J Ceram Soc Jpn, 1997, 105(5): 369-373. [37] BADWAL S P S. Zirconia-based solid electrolytes: microstructure, stability and ionic conductivity [J]. Solid State Ionics, 1992, 52: 23-32. [38] ZHANG T, ZHU Q S, XIE Z H. Modeling of cracking of the glass-based seals for solid oxide fuel cell [J]. J. Power Sources, 2009, 188(1): 177-183. [39] DONALD I W, METCALFE B L, GERRARD L A. Interfacial reactions in glass-ceramic-to-metal seals [J]. J Am Ceram Soc, 2008, 91(3): 715-720. [40] TANIGUCHI S, KADOWAKI M, KAWAMURA H, et al. Degradation phenomena in the cathode of a solid oxide fuel cell with an alloy separator [J]. J Power Sources, 1995, 55: 73-79. [41] BADWAL S P S, DELLER R, FOFERA K, et al. Interaction between chromia forming alloy interconnects and air electrode of solid oxide fuel cells [J]. Solid State Ionics, 1997, 99: 297-310. [42] PAULSON S C, BIRSS V I. Chromium poisoning of LSM-YSZ SOFC cathodes I. Detailed study of the distribution of chromium species at a porous, single-phase cathode [J]. J Electrochem Soc, 2004, 151(11): A1961-A1968. [43] SHARMA V I, YILDIZ B. Degradation mechanism in La0.8Sr0.2CoO3 as contact layer on the solid oxide electrolysis cell anode [J]. J Electrochem Soc, 2010, 157(3): B441-B448. [44] BLUM L, BUCHKREMER H P, GROSS S, et al. Solid oxide fuel cell development at Forschungszentrum Juelich [J]. Fuel Cell, 2007, 7(3): 204-210. [45] ANSELMI-TAMBURINI U, GARAY J E, MUNIR Z A. Fast low- temperature consolidation of bulk nanometric ceramic materials [J]. Scr Mater, 2006, 54: 823-828. [46] MUNIR Z A, ANSELMI-TAMBURINI U, OHYANAGI M. The effect of electric ?eld and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method [J]. J Mater Sci, 2006, 41: 763-777. [47] ANSELMI-TAMBURINI U, MAGLIA F, CHIODELLI C, et al. Nanoscale effects on the ionic conductivity of highly doped bulk nanometric cerium oxide [J]. Adv Funct Mater, 2006, 16: 2363-2368. [48] CHEN I W, WANG X H. Sintering dense nanocrystalline ceramics without final-stage grain growth [J]. Nature, 2000, 404: 168-171. [49] GESTEL T V, SEBOLD D, MEULENBERG W A, et al. Development of thin-film nano-structured electrolyte layers for application in anode-supported solid oxide fuel cells [J]. Solid State Ionics, 2008, 179: 428-437. [50] TULLER H L. Ionic conduction in nanocrystalline materials [J]. Solid State Ionics, 2000, 131: 143-157. [51] CRACIUM R, PARK S, GORTE R J, et al. A novel method for preparing anode cermets for solid oxide fuel cells [J]. J Electrochem Soc, 1999, 146(11): 4019-4022. [52] JIANG Z Y, XIA C R, CHEN F L. Nano-structured composite cathodes for intermediate-temperature solid oxide fuel cells via an in?ltration/ impregnation technique [J]. Electrochim Acta, 2010, 55: 3595-3605. [53] HUANG Y Y, AHN K Y, VOHS J M, et al. Characterization of Sr-doped LaCoO3-YSZ composites prepared by impregnation methods [J]. J Electrochem Soc, 2004, 151(10): A1592-A1597. [54] HUANG Y Y, VOHS J M, GORTE R J. Fabrication of Sr-Doped LaFeO3 YSZ composite cathodes [J]. J Electrochem Soc, 151(4): A646-A651. [55] HUANG Y Y, VOHS J M, GORTE R J. Characterization of LSM-YSZ composites prepared by impregnation methods [J]. J Electrochem Soc, 2005, 152(7): A1347-A1353. [56] HUANG Y Y, VOHS J M, GORTE R J. SOFC Cathodes prepared by in?ltration with various LSM precursors [J]. Electrochem Solid State Lett, 2006, 9(5): A237-A240. [57] JIANG S P. A review of wet impregnation-An alternative method for the fabrication of high performance and nano-structured electrodes of solid oxide fuel cells [J]. Mater Sci Eng A, 2006, 418: 199-210. [58] JIANG S P, WANG W. Fabrication and performance of GDC-impreg- nated (La, Sr)MnO3 cathodes for intermediate temperature solid oxide fuel cells [J]. J Electrochem Soc, 2005, 152(7): A1398-A1408. [59] SHOLKLAPPER T Z, LU C, JACOBSON C P, et al. LSM-in?ltrated solid oxide fuel cell cathodes [J]. Electrochem Solid State Lett, 2006, 9(8): A376-A378. [60] WANG W S, GROSS M D, VOHS J M, et al. The stability of LSF- YSZ electrodes prepared by in?ltration [J]. J Electrochem Soc, 2007, 154(5): B439-B445. [61] SHOLKLAPPER T Z, RADMILOVIC V, JACOBSON C P, et al. Synthesis and stability of a nanoparticle-in?ltrated solid oxide fuel cell electrode [J]. Electrochem and Solid State Lett, 2007, 10(4): B74-B76. [62] YANG C H, JIN C, COFFIN A, et al. Characterization of in?ltrated (La0.75Sr0.25)0.95MnO3 as oxygen electrode for solid oxide electrolysis cells [J]. Int J Hydrog Energy, 2010, 35: 5187-5193. [63] PRABHAKARAN K, BEIGH M O, LAKRA J, et al. Characteristics of 8mol% yttria stabilized zirconia powder prepared by spray drying process [J]. J Mater Process Technol, 2007, 189(1-3): 178-181. [64] BADWAL S P S, CIACCHI F T, MILOSEVIC D. Scandia-zirconia electrolytes for intermediate temperature solid oxide fuel cell operation [J]. Solid State Ionics, 2000, 136: 91-99. [65] VAN HERLE J, HORITA T, KAWADA T, et al. Low temperature fabrication of (Y, Gd, Sm)-doped ceria electrolyte [J]. Solid State Ionics, 1996, 86-88: 1255-1258. [66] HUANG P N, PETRIC A. Superior oxygen ion conductivity of lanthanum gallate doped with strontium and magnesium [J]. J Electrochem Soc. 1996, 143(5): 1644-1648. [67] EGUCHI K, HATAGISHI T, ARAI H. Power generation and steam electrolysis characteristics of an electrochemical cell with a zirconia- or ceria-based electrolyte [J]. Solid State Ionics, 1996, 86-88: 1245- 1249. [68] YAMAJI K, HORITA T, ISHIKAWA M, et al. Chemical stability of the La0.9Sr0.1Ga0.8Mg0.2O2.85 electrolyte in a reducing atmosphere [J]. Solid State Ionics, 1999, 121(1-4): 217-224. [69] DJURADO E, LABEAU M. Second phases in doped lanthanum gallate perovskites [J]. J Eur Ceram Soc, 1998, 18(10): 1397-1404. [70] ELANGOVAN S, HARTVIGSEN J J, FROST L J. Intermediate temperature reversible fuel cells [J]. Int J Appl Ceram Technol, 2007, 4(2): 109-118. [71] OSADA N, UCHIDA H, WATANABE M. Polarization behavior of SDC cathode with highly dispersed Ni catalysts for solid oxide electrolysis cells [J]. J Electrochem Soc, 2006, 153(5): A816-A820. [72] WANG W S, HUANG Y Y, JUNG S, et al. A comparison of LSM, LSF, and LSCo for solid oxide electrolyzer anodes [J]. J Electrochem Soc, 2006, 153(11): A2066-A2070. [73] TAO Y, NISHINO H, ASHIDATE S, et al. Polarization properties of La0.6Sr0.4Co0.2Fe0.8O3-based double layer-type oxygen electrodes for reversible SOFCs [J]. Electrochim Acta, 2009, 54(12): 3309-3315. [74] SHAO Z P, YANG W S, CONG Y, et al. Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.2O3-δ oxygen membrane [J]. J Membr Sci, 2000, 172(1/2): 177-188. [75] SHAO Z P, HAILE S M. A high-performance cathode for the next generation of solid-oxide fuel cells [J]. Nature, 2004, 431(7005): 170-173.

women want men infidelity signs how do i know if my wife cheated
why women cheat on husbands link link
online reason why husband cheat married woman looking to cheat
how to catch a cheater link go
why do wife cheat on husband why men cheat how to cheat wife
服务与反馈:
文章下载】【加入收藏
中国硅酸盐学会《硅酸盐学报》编辑室
京ICP备10016537号-2
京公网安备 11010802024188号
地址:北京市海淀区三里河路11号????邮政编码:100831
电话:010-57811253??57811254????
E-mail:jccs@ceramsoc.com